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New difference formulas are derived for solving the biharmonic problem in two dimensions 
over a rectangular domain. These methods use only the nine grid points of a single mesh cell 
and do not require fictitious points in order to approximate the boundary conditions. 
Derivatives of the solution are obtained as a by-product of the methods. Second order 
formulas are derived for both the first and second biharmonic problems. In numerical 
experiments, the new second order formulas compare favourably with the standard second 
order methods. Extensions to fourth order formulas are given. The method of deriving these 
formulas can be used to derive similar formulas for arbitrarily shaped regions. 

1. INTRODUCTION 

We consider the biharmonic equation 

Lu = u,xxx + 2%xyy + u,,,, =.0x, Y> (1) 

with two types of boundary conditions. In the first case we consider the boundary 
conditions 

u, au/&r prescribed (2) 

which we call the first problem. In the second case we consider the boundary con- 
ditions 

u, c~*u/&z* prescribed (3) 

which we will refer to as the second problem. 
We restrict our attention to regions which may be partitioned into square 

subregions by a uniform grid. The finite difference approximation to Eq. (1) is 
obtained on a square subregion that consists of the central point 0, (x,, , y,,) and the 
eight points (x0 f h, y,,), (x,, y, f h), (x0 f h, y, f h) denoted by 1 - 8 (see Fig. 1). A 
combination of the values of the solution u(x, y), its derivatives and the values of the 
right hand function f(x,~) at the nine grid points are used to derive approximation 
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FIGURE I 

formulas. We denote the values of u, uX, a,, uXX, u,, and f at the grid point j by njr 
u.xj9 uyj3 uxxj3 U,yj and fj, respectively. 

The standard 13-point approximation of the biharmonic equation is obtained by 
using second order central differences. This requires the use of fictitious points 
outside of the region of interest. The values of the solution at these points is expressed 
in terms of the boundary values of the derivative and the values of the solution at grid 
points inside the region. Gupta and Manohar [ 11 have considered several such 
schemes for the first problem and have shown that the accuracy of the numerical 
solution depends upon the boundary approximation used. 

The finite difference formulas which we present here are based on only the eight 
grid points surrounding each grid point. This means that fictitious points for incor- 
porating the boundary conditions are not required. However, the linear systems that 
are generated by these formulas have a more complicated structure than those derived 
from the standard central-difference formulas, and they are not positive-definite. 
Consequently, the linear systems have to be solved by direct methods in most cases. 
Successive over relaxation (S.O.R.) was used also, but convergence was slow. 

In spite of these drawbacks, it is hoped that the new ideas presented in this paper 
may lead to the development of new techniques for solving more general problems. 

2. EMBEDDED POLYNOMIALS 

The procedure we use to derive the finite difference formulas is new, although it 
has connections with the “Mehrstellenverfahren” of Collatz [2] and the works of 
Young and Dauwalder [3] and that of Lynch and Rice [4], and Boisvert [5]. Our 
experience with the finite element method [6] also helped us formulate this new 
approach. The development of the procedure for other linear differential equations 
has been given by Gupta, Manohar and Stephenson in [7-l 11. 

For the derivation of a d’fference formula for a grid cell shown in Fig. 1, we 
require that the solution u an b the function f can be expanded in a power series. Let 
us assume the following expansions 

u = )J a,, jxiyj, f = --yJjXi,j 
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where x and y are local coordinates with origin at the center 0 of the grid element. If 
we substitute expansions (4) in the differential equation (1) and equate coefficients of 
each monomial x’yj we get the linear constraints on the unknown coefficients u~,~: 

(i + 4)(i + 3)(i + 2)(i + 1) Uj+d,j + 2(i + 2)(i + l)(j + 2)(j + 1) ui+2,j+2 

+ (j + 4)(j + 3)(j + 2)(j + l> ui,j+4 =.A,j, i, j= 0, 1, 2 ,.... (5) 

The coefficients f.,j are assumed to be known, or can be expressed in terms of the 
grid point values of f(x, y). 

In order to find a finite difference discretization for (1) we first of all truncate the 
series for u in (4) so that the solution for the boundary value problem is represented 
by a polynomial on each grid cell. This embedded polynomial is uniquely determined 
from a subset of Eqs. (5) and the values of the polynomial and its derivatives 
at the grid points on the single cell. These values, which are eventually found as the 
solution of the discretized system of equations, are the values of the numerical 
solution of the boundary value problem and its derivatives. The interpolation 
equations which relate the coefficients CI,,~ of the embedded polynomial to the values 
of the solution u and its derivatives at the grid points are 

Uk= U(Xk,Yk)=C ui,jxiYj, 

(6) 

U ,,k=$(Xk,y,=2;j(j- 1) Ui,jX:Yi,-2. 

In the case of the first biharmonic problem we use only the values of uk, uXk and 
U yk. In the case of the second biharmonic problem we use the values of uk, u,,~ and 
U yyk. We form a system of linear equations from (5) and (6) which is solved to 
determine the coefficients ui,j of the embedded polynomial. These coefficients are 
expressed in terms of the values of u and its derivatives at grid points in the grid cell, 
and the coefficients off: The finite difference equations for the values of the solution 
and its derivatives at the center of a grid cell are given by 

u, = u(O,O) = uo,O 

u 1 =a U = UO,l 

U .:: = 2::;, $;; = 2u,,,. 
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Inversion of the system of linear equations (5) and (6) is easily done with a 
computer and is essential in the case when arbitrarily shaped regions are considered. 
However, on a square grid cell, we are able to take advantage of certain symmetries, 
as will be illustrated in the next section. In fact, finite difference formulas can be 
found without inverting the system of linear equations. For instance, in the case of 
the first biharmonic problem, we only make use of U, U, and u, at the grid points. 
Consequently, we only need to determine the first three coefficients a,,,, a,,, and a,,, 
for the required difference equations. 

The interpolations of u and its derivatives are not necessarily done on the same set 
of grid points, and care must be taken to avoid a singular system of equations. For 
example, if u is represented by a polynomial of degree n, there should be no more 
than n + 1 interpolation conditions on any grid line in the computational cell. 

In the following discussion we attempt to justify the choices we made in selecting 
the degree of the embedded polynomials, and the interpolation conditions (6) that we 
consider in this paper. 

We note that in the expansion of u(x, y), terms of degree m > 3 are partitioned into 
two sets by the constraints (5). For instance, the coefficients u~,~, ad,*, u~,~ and u0,6 
are associated withf,,, and f,,z while a,,,, a333 and a,,, are associated withf,,,. We 
adopt the convention of grouping the interelated terms of degree M together into two 
sets, the first set containing the terms connected with the term a,w,Ox’z’ and the second 
set containing the term connected with the term Q,~- ,,1 xMP ‘y. We refer to the 
polynomial expansion that includes just the terms up to the first set of terms of degree 
M as being an expansion up to degree M - i. In Table I we list the number of inter- 
polations required to determine the coefficients a,,j for expansions of u up to degree 
6. 

In Fig. 2 we illustrate two natural choices of interpolations. We indicate by 0, a 
grid point where the value of u is interpolated, and by +, a grid point where a 
derivative of u is interpolated. 

The number of interpolation conditions in Figs. 2a and b is 12 and 20, respectively. 
Consequently, the degree of the embedded polynomials chosen in the sequel is 3.5 
and 5.5, respectively. With these choices, the system of linear equations (5) and (6) 
are nonsingular and the resulting difference schemes can be determined by a 
computer routine. 

TABLE I 

Degree of Number of terms 
polynomial u in u 

Number of 
constraints 

Number of 
interpolations 

3.5 13 1 12 
4 15 1 14 
4.5 18 2 16 
5 21 3 18 
5.5 25 5 20 
6 28 6 22 
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3. FORMULAS FOR THE FIRST BIHARMONIC PROBLEM 

3.1. Second Order Formula 

In this section we derive a new second order formula which has two advantages 
over the classical thirteen point formula. It is based upon a single computational cell, 
and incorporates the boundary conditions in a natural way without the need to 
introduce fictitious points or special schemes at the boundary. We give the details of 
the derivation in this case in order to illustrate the general procedure which was 
outlined previously in Section 2. 

A second order formula can be found by considering a polynomial expansion for u 
of degree 3.5. We interpolate u at the points 1, 2,..., 8, U, at the points 1, 3 and U, at 
the points 2, 4 in Fig. 1. These 12 conditions together with one constraint from (5) 
determine the 13 coefficients in the polynomial U. 

We let u = a,,, + a,,,~ + a,,,y + e.. a, ,x 4 

constraint (i = 0,j = 0) from (5) multiplied by hh is 
+ a,.,x*y’ + q4y4, the first 

fo,oh4 = (Xz,,, t 8q2 + 24u,,,) h4. (7.1) 

The interpolation conditions give 

u1 = a,,, + a,,,h + u,,,h2 t u,,,h3 t u4,,h4 

u* = *,,, t u,,,h t a,,,h2 t u,,,h3 + uo,‘Jz4 

u8 = *O,O + %,,h - %I,$ t %,oh* - *,,,h' + *,,,h* + *,,,h3 

- a2,1h3 + a1,,h3 - a,,,h3 t u4,,h4 t a2,,h4 t ao,,h4 

and (7.2) 

24 Xl = a,,, + 2u,,,h t 3u,,,h2 t 4u4,,h3 

U y4 = a,,, - 2a,,, h + 3a,,, hZ - 4uo,4 h3. 
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Inversion of this system (7.1), (7.2) by hand is not necessary. We are only 
interested in finding expressions for a,,,, a,,, and a,,, since these give the required 
finite difference expressions for uO, uXO and uYO, respectively. For a square grid 
element, we are able to make use of the following symmetric expression: 

ou, = u1 + u* + 24, + u4 

= 4%,0 +- 2(%,, + %,2) h2 + 2(a,,, + %,.I) h4 (8.1) 

&J = us + u, + u, + u* 

= 4%~~ + 4(a2,, + a,,,) h* + 4(qo + a2,* + u~,~> h4 (8.2) 

hOu;, = h(u,, - ux3 + u,, - uy4) 

= 4G2.0 + %,2) h* + W4,o + ~0.4) h4. (8.3) 

Equations (7.1), (8.1), (8.2) and (8.3) can be considered as four linear equations in 
the four unknowns a,,,, (a,,, + a,,,) h*, u2,* h4 and (u~,~ + u~,~) h4. Elimination gives 
us uo,o and hence a finite difference scheme for uO 

(9.1) 

In a similar fashion, from 

and 

2.4, - u3 = 2u,Jr t 2u,,,h3 

h(u,, + u,3) = 2a,,,h + 6a,,,,h3 

we derive an expression for a,,, h, which gives a difference scheme for hux,,, 

ko =; (u, - u3) - $ (u,1 + ux3). (9.2) 

Similarly, we get 

hu,, = f (u, - u,) - $ (u,,z + u,,). (9.3) 

Numerical results in Section 5 show that this scheme compares favourably with the 
classical thirteen point scheme. At interior mesh points we have three unknowns 
U, U, and u,. This means that the number of bands with nonzero entries is increased 
and so is the size of the final matrix for the same mesh size. However, the accuracy 
for a given mesh size is improved by this new scheme, and in addition, the values of 
the derivatives of the solution, which are often of interest, are also computed. 
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Because of symmetry in a square grid cell, formulas (9) are exact for polynomials 
of degree 5 even though the derivation was based upon polynomials of a lesser 
degree. If we had included polynomials of degree 5 in the derivation, the symmetric 
expressions (8) would not have altered. However, in the case when an irregular grid is 
used, we compute the difference formulas automatically by inverting the system (7) in 
an assembly subroutine in a manner similar to a finite element program. In this case, 
the formulas do not exhibit this superpotency, being exact only for polynomials of 
degree 3.5. 

3.2. Fourth Order Formulas 

A fourth order method can be found by considering a polynomial expansion for u 
up to degree 5.5. We interpolate u on the points 1-8, U, on the points 1, 3, 5, 6, 7, 8 
and u, on the points 2, 4, 5, 6, 7, 8. These 20 conditions together with 5 constraints 
from (5) determine the 25 coefficients ai,j in the polynomial u(x, y). We adopt the 
notation Cl& = uXs - uXh - uX7 + uX8 + uYs + uY6 - u,, - uY8. The difference formulas 
are 

3 1 7 
u,,=110u,-4417u,,-66hOu~- 

1 
- hOu; 
264 

+ &-oh' + & (fz,o +fo,d h6 

hu,o = $ (u, - uJ + & (u, - u6 - u, + us) - $ (u,, + UJ 

- $ w%l - $ @,5 - uy6 + $7 - $Q3) + &ft.oh' 

hu,, = & (u, - U,) + f (U, t u6 - U7 - I$) - $ (U,, t Uy4) 

- g) qal - $ @x5 - ‘~6 + ‘x7 - %8) f &fo,, hS. 

(10.1) 

(10.2) 

(10.3) 

For the computations reported in Section 5 we use interpolation off in place of the 
Taylor coefficients. We make the following substitutions 

Although the number of bands with nonzero entries is 27 which is greater than 
when the 13-point formula is used, the increased accuracy of formula (10) permits 
the use of a much coarser mesh. Because of symmetry, in a square grid element, 
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formulas (10) are exact for polynomials of degree 7 even though they are based upon 
polynomials of a lesser degree. However, in the case when an irregular grid is used, 
the formulas do not exhibit this superpotency, being exact for polynomials of degree 
5.5. 

In the case when the value of u is known explicitly on the boundary and the 
boundary is parallel to one of the coordinates, then we also know the tangential 
derivative and formulas (10) can be used. However, in practice, u is only assumed to 
be known on the boundary nodes, and the tangential derivatives can only be deter- 
mined by interpolation. We attempted to replace the derivatives along the boundary 
by the five point central difference formula 

u’ = &- (up, - Sue, + 8u, - u2) + o(k4). (11) 

Experiments showed us that the accuracy of formulas (10) were maintained only 
when the stepsize k was reduced to the order of 10m5, a value much smaller than the 
mesh width h = l/16. 

We have developed an alternative procedure, which is applicable even in more 
general situations. We use special single cell formulas for grid cells adjacent to a 
boundary, or at a corner where two boundaries meet. These formulas use additional 
values of u at boundary points half way between the grid points on the boundary; see 
Fig. 3. 

Because of the lack of symmetry, these formulas are more complicated than those 
presented earlier in (10). The formulas (15) and (16) for the two cases shown in 
Fig. 3 are given in the Appendix. The formulas for the other boundaries and corners 
are obtained from these by appropriate coordinate transformations. For instance, the 
left boundary formula is a reflection of the right boundary formula through the 
vertical line joining the vertices 2 and 4 with U, replaced by -u,. The upper 
boundary formula is obtained by reflecting the right boundary formula through the 
diagonal joining the vertices 7 and 5 with U, and U, interchanged. These formulas are 
not exact for all polynomials of degree 7, viz. x”y and xy6. However, numerical 
results in Section 5 show that these formulas maintain the fourth order accuracy of 
the scheme (10). Moreover, they can be generalized to non rectangular domains. 

We illustrate a method of determining the orders of the formulas by considering 
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the formulas (9). We expand the values of u, u, and u, in Taylor series about the 
central point 0, and obtain the expressions 

From these expressions and the differential equation f = Lu, we get at the central 
point 

1604 - 2024, - 6hO4 - 56u, 
h4 +fo.o = If- Lu lo + O(h2). 

Thus the Iinite difference formula (9.1) is a second order discretization of the bihar- 
manic equation (1). Similarly, the formulas (9.2) and (9.3) are second order 
discretizations of the derivatives. Using this method, we can show that formulas (lo), 
(15) and (16) are fourth order discretizations. 

4. FORMULAS FORTHE SECOND BIHARMONIC PROBLEM 

In this case of the second biharmonic problem we can replace the interpolations of 
u, and u, by interpolations of u,, and u,, repectively. We change the notation 
slightly using 

i=S 

A second order formula for the second biharmonic problem is given by 

(12.1) 
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A fourth order formula is given by 

83 u,=-Ou,-~Ou,-~h20ug-~h”Ou; 
241 

++&h‘%.o + & h6(f2,0 +fo,z) 

h ‘u,,,, = $&I ++g+ @2 + u4> + g 4 

+ g h2@,,, + u,.xJ + l;-f;oo h*‘J% 

+ $tj& h2@,,, + uyy4) + & h2%,o 

-$$!A,,, - $$Cf~,o-$&bSO,2~ 

(12.3) 

(13.1) 

(13.2) 

The formula for h*u,,, can be obtain from the formula for h2uxxo by interchanging 
the subscripts (1 and 2), (3 and 4), the derivatives (u,, and u,,) and the coefficients 
(.b and&,). 

As in the case of the first biharmonic problem, the formulas (12) and (13) are 
superpotent, being exact for polynomials of degree 5 and 7 respectively. 

The fourth order formulas (13) require knowledge of the second tangential 
derivative. As in the case of the formulas (lo), we introduce special formulas at the 
boundaries and corners, and the appropriate formulas were generated in a computer 
subroutine. We list the table of weights generated in the Appendix for the right hand 
edge formulas and the right upper corner formulas. 

5. NUMERICAL EXAMPLES 

We consider a selection of problems that have been studied by Gupta and 
Manohar [ 11. These problems have been studied by other authors and provide a 
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useful basis for comparison. In each case we took the unit square 0 < x, y < 1 as the 
region of integration and covered it with a uniform grid of width h. Gupta and 
Manohar [ I] only considered the first biharmonic problem and their results are the 
best available in the literature. We considered both the first and second biharmonic 
problems. Our results compare favourably with those obtained by Gupta and 
Manohar. 

Because our methods use three unknowns at each grid point, the number of 
unknowns for a certain mesh size is much greater than the number of unknowns for 
standard difference methods. For instance, for h = l/4, l/8 and l/16, the number of 
unknowns are 27, 147 and 675, respectively. The second order methods have 13 
unknowns in each equation while the fourth order methods have 27 unknowns in each 
equation. The bandwidth in the case of h = l/16 is 99. We used both direct solvers 
and iterative methods. However, iterative methods were very slow, but because of the 
machine storage limitations, it was necessary to use them for h = l/16 In fact, SOR 
failed to converge for h = l/16 in less than 10,000 iterations, The computations were 
performed on a DEC-20 in single precision. 

We considered the following problems: 

PROBLEM 1. 

U=X2+y2-xexcosy, Lu=O. 

PROBLEM 2. 

u = [(x - X’>(Y -Y2)12, 

Lu = 8[3y2(1 -y)’ + 3x2(1 -x)’ + (6x2 - 6x + 1)(6y2 - 6y + I)]. 

PROBLEM 3. 

u = (1 - cos 271x)( 1 - cos 2ny), 

Lu = (27q4 [4 cos(27rx) cos(27cy) - cos(27rx) - cos(27Ty)]. 

We give the results of the first biharmonic problem in Table II, where we compare 
the maximum absolute errors in the approximate solution u for the second and fourth 
order formulas (9) and (lo), respectively. We also compare the results obtained when 
the tangential derivatives in (10) are replaced by the live point formula (1 l), and 
finally, when the formulas (15) and (16) are employed at the boundary. We use * to 
indicate that the results were affected by roundoff errors. The notation we use is 
.6990(-3) = 0.699010P3, EXACT < l.O(-7). 

From the results we observe that replacing the tangential derivatives by formula 
(11) with k = .5(-4), introduces an error of the order of 10-6. The use of formulas 
(15) and (16) had a less consistent effect on the errors because the location of the 
points where the maximum error occurs was observed to change in this case. 
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TABLE II 

First Biharmonic Problem, Maximum Absolute Errors in u 

Gupta, 
Problem h Manohar h 

(‘Oh (15). 
(9) (10) (lo), (‘1) (16) 

1 ‘I5 .6990(-3) ‘14 
l/IO .8774(-4) l/8 
l/20 .4768(-5) l/16 

2 l/20 .1994(-4) 114 
W 
l/16 

3 l/20 .1981(-l) l/4 
l/8 
l/l6 

.2916(-4) 

.7645(-5) 
* 

.3873(-3) 

.9492(-4) 

.3035(-5) 

.4372 .4080(-l) .4080(- 1) .4106(-l) 

.1035 .2618(-2) .2618(-2) .2635(-2) 

.2594(-l) .1458(-3) .1458(-3) .125Y(-3) 

EXACT .9388(-6) .1974(-6) 
EXACT .9835(-6) EXACT 

+ 4: ‘k 

.2555(-4) .2555(-4) .2566(-4) 
.6523(-6) .4577(-6) .3667(-6) 

* :r * 

However, the order of the method remains the same. Numerically, we estimate the 
order of the methods by 

ln(e,,le,,)lln(hllh2) 
where e,,i and eh2 are the maximum errors for two grid mesh widths hl and h2, 
respectively. All the methods based on formulas (10) exhibit order four behaviour. 

Since our methods make use of the derivatives U, and u,, we give in Table III the 

TABLE III 

First Biharmonic Problem, Maximum Errors in u, u,, u, 

Formulas (9) - O(h*) Formulas (10) - O(h4) 

Problem 1 

h u ux UY u ux UV 

l/4 .29 16(-4) .3824(-3) .9281(-4) EXACT .1335(-5) .1509(-5) 

‘18 .7645(-5) .4076(-4) .2384(-4) * * * 
l/16 * * * * * * 

Problem 2 

l/4 .3873(-3) . 1162(-2) .1162(-2) .2555(-4) .1238(-3) .1238(-3) 
l/8 .9492(-4) .2852(-3) .2852(-3) .6523(-6) .3397(-5) .3129(-5) 
l/16 .3035(-5) .1009(-4) .9665(-j) * * * 

Problem 3 

l/4 .4372 .745 1 .745 1 .4080(-l) .2468 .2468 
l/8 .1035 .3090 .3090 .2618(-2) .9094(-2) .9094(-2) 
l/16 .2594(-l) .8307(-l) .8306(-l) .1458(-3) .4621(-3) .4597(-3) 
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maximum errors in U, U, and uy for the above problems. As expected, the errors for 
the derivatives are greater than the corresponding errors in u, however, the rate of 
decrease in the errors in the derivatives is consistent with the order of the methods 
used. 

In Table IV we compare the results for the second biharmonic problem using the 
formulas which interpolate second derivatives, (12) and (13). As in the case of the 
first biharmonic problem, in practice we would need to use the boundary formulas 
(17), (18) in addition to (13). We have not done this in this comparison which is 
given to indicate the improvement that can be expected with the fourth order method. 

6. CONCLUDING REMARKS 

In this paper we have outlined a procedure for obtaining high order difference 
formulas for the biharmonic equation. The same procedure can be applied to derive 
difference formulas for other linear partial differential equations. The procedure 
described in this paper is different from the one given by Young and Dauwalder (31, 
Lynch and Rice [ 4 ] and Boisvert (51, although all these methods are generalizations 
of the Mehrstellenverfahren of Collatz [2]. Difference formulas for mesh points near 
a boundary are obtained without the use of fictitious points, thereby eliminating the 
usual difficulty encountered in using central-difference methods. A drawback to these 
methods is that solutions to the resulting linear system of equations cannot be 
obtained quickly because of the lack of simple structure and positive-delinitness. 
Numerical results for several different model problems have been presented in this 
paper, and these results along with the work of Lynch, Rice and Boisvert show that 
high order methods may be attractive at least for those problems where the solution is 
sufficiently smooth. To make these methods more competitive with the central- 
difference methods, it is necessary to develop suitable solution techniques that take 

TABLE IV 

Second Biharmonic Problem, Maximum Absolute Errors in u 

Problem h Formula (12) Formula (13) 

1 l/3 
116 
l/12 

2 ‘I3 
‘16 
l/12 

3 l/3 
116 
l/12 

W2) 
.1012(-3) 
.2818(-4) 
.6735(-S) 

.1458(-2) 

.4326(-3) 
.1043(-3) 

.3519(l) 

.9600(O) 

.2241(O) 

W4) 
.1863(-S) 
.1863(-5) 

* 

.3449(-3) 

.2582(-4) 

.1561(-5) 

.3292(O) 

.1979(-l) 

.I 179(-2) 
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advantage of the block structure of the resulting linear system of equations. The 
techniques presented here may open up new avenues of research in the development 
of discretization schemes for more general problems. The same procedure has now 
been applied successfully for the Helmholtz equation [ 111 and the convection- 
diffusion equation in two and three dimensions (91. Applications to problems with 
curved boundaries were reported in Tokyo [ 101. 

APPENDIX 

The special fourth order formulas for the edge and corner cells shown in Fig. 3 are 
given here in tabular form. In Table V we give the formulas for the first biharmonic 

TABLE V 

First Biharmonic Problem 

1852~~ = 1852hu,, = 
426 5892110 
506 6 
506 -11052/10 
506 6 

-66119 4346160 
-43 -1449110 
-43 -1449110 

-m/9 -4346160 
64019 140813 
640/9 140813 

-58913 -3698/10 
58913 -371 
-4116 -451110 

41/6 -9512 
4116 -9512 

-4116 -451/10 
-59013 -16/10 

59013 16110 

-2013 486110 
2013 -486/10 
35 -l/2 

0 926/60 
0 0 

1413 -l/15 
83/18 -13130 

Edge formula (15) Corner formula (16) 
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0 22 
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-1 113 
1 -l/3 
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0 11/12 
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4 lhu,, = 4lhu,, = 
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-12315 0 
0 -12315 
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l/20 -3314 

0 -41120 
21120 -21120 

-21120 -1 
0 0 

41/120 0 
0 411120 
l/120 -l/120 

-l/120 l/l20 
0 0 
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problem. In Table VI we give the corresponding formulas for the second biharmonic 
problem. A blank in the table means that the quantity is not used in that particular 
formula. 
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